Response of osteoblastic cells to titanium submitted to three different surface treatments.
نویسندگان
چکیده
In the complex process of bone formation at the implant-tissue interface, surface properties are relevant factors modulating osteoblastic function. In this study, commercially pure titanium (cp Ti) samples were prepared with different surface characteristics using chemical attack with a sulfuric acid/hydrochloric acid based solution (treatment A); chemical attack plus anodic oxidation using phosphoric acid (treatment B); and chemical attack plus thermal oxidation followed by immersion in a sodium fluoride solution (treatment C). The samples were characterized by scanning electron microscopy (SEM), contact profilometry and contact angle. The biological performance of the prepared surfaces was evaluated using mice osteoblastic cell cultures for up to 21 days. Cells seeded on the different titanium samples showed similar behavior during cell attachment and spreading. However, cellular proliferation and differentiation were higher for samples submitted to treatments A and C (p < or = 0.05; n = 3), which were less rough and showed surface free energy with smaller polar components.
منابع مشابه
رفتار سلول استخوان ساز MG-63 بر روی سطح تیتانیم اصلاح شده با محلول اسیدی
The osseointegration of oral implants is related to the early interactions between osteoblastic cells and titanium surface. Chemical surface modification of titanium (Ti) implants is used to improve peri-implant bone growth, bone-to-implant contact, and adhesion strength. Thus, in this study, the surface topography, chemistry, and biocompatibility of polished titanium surface treated with mixe...
متن کاملActin cytoskeletal organization in human osteoblasts grown on different dental titanium implant surfaces.
The understanding of the cellular basis of osteoblastic cell-biomaterial interaction is crucial to the analysis of the mechanism of osseointegration. Cell adhesion is a complex process that is dependent on the cell types and on the surface microtopography and chemistry of the substrate. We have studied the role of microtopography in modulating cell adhesion, in vitro, using a human osteoblastic...
متن کاملDifferential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces.
Surface structural modifications at the micrometer and nanometer scales have driven improved success rates of dental and orthopaedic implants by mimicking the hierarchical structure of bone. However, how initial osteoblast-lineage cells populating an implant surface respond to different hierarchical surface topographical cues remains to be elucidated, with bone marrow mesenchymal stem cells (MS...
متن کاملEffect of implant surface microtopography by hydroxyapatite grit-blasting on adhesion, proliferation, and differentiation of osteoblast-like cell line, MG-63
With regards to their biological and physiochemical properties, titanium-based biomaterials have been successfully used in orthopaedic, dental and maxillo-facial surgery mainly as endosseous implants. The early osseointegration of titanium dental implants is an important factor for their clinical success. The implant loading to bone is influenced by various factors, including surface chemistry,...
متن کاملSurface nanofeature effects on titanium-adherent human mesenchymal stem cells.
PURPOSE Hydrofluoric acid treatment of moderately rough commercially pure titanium produced by titanium oxide (TiO2) grit blasting (OsseoSpeed) results in a surface with nanofeatures. The aim of this project was to better understand the effect of surface nanotopography on adherent osteoblastic differentiation. MATERIALS AND METHODS Human mesenchymal stem cells were grown on TiO2 grit-blasted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brazilian oral research
دوره 19 3 شماره
صفحات -
تاریخ انتشار 2005